NE Is Not NP Turing Reducible to Nonexponentially Dense NP Sets

نویسنده

  • Bin Fu
چکیده

A long standing open problem in the computational complexity theory is to separate NE from BPP, which is a subclass of NPT(NP) ∩ P/Poly. In this paper, we show that NE 6⊆ NPT(NP ∩ Nonexponentially-Dense-Class), where Nonexponentially-Dense-Class is the class of languages A without exponential density (for each constant c > 0, |A| ≤ 2 c for infinitely many integers n). Our result implies NE 6⊆ NPT(padding(NP, g(n))) for every time constructible super-polynomial function g(n) such as g(n) = n , where Padding(NP, g(n)) is class of all languages LB = {s10 g(|s|)−|s|−1 : s ∈ B} for B ∈ NP. We also show NE 6⊆ NPT(Ptt(NP) ∩ TALLY).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NE is not NP Turing Reducible to Nonexpoentially Dense NP Sets

A long standing open problem in the computational complexity theory is to separate NE from BPP, which is a subclass of NPT(NP) ∩ P/Poly. In this paper, we show that NE 6⊆ NPT(NP ∩ Nonexponentially-Dense-Class), where Nonexponentially-Dense-Class is the class of languages A without exponential density (for each constant c > 0, |A≤n| ≤ 2nc for infinitely many integers n). Our result implies NE 6⊆...

متن کامل

Approximable Sets Universitt at Karlsruhe

Much structural work on NP-complete sets has exploited SAT's d-self-reduci-bility. In this paper we exploit the additional fact that SAT is a d-cylinder to show that NP-complete sets are p-superterse unless P = NP. In fact, every set that is NP-hard under polynomial-time n o(1)-tt reductions is p-superterse unless P = NP. In particular no p-selective set is NP-hard under polynomial-time n o(1)-...

متن کامل

P-Selective Sets, and Reducing Search to Decision vs. Self-Reducability

We obtain several results that distinguish self-reducibility of a language L with the question of whether search reduces to decision for L. These include: (i) If NE 6 = E, then there exists a set L in NP ? P such that search reduces to decision for L, search does not nonadaptively reduces to decision for L, and L is not self-reducible. 1 (ii) If UE 6 = E, then there exists a language L 2 UP ? P...

متن کامل

Separating the Notions of Self- and Autoreducibility

Recently Glaÿer et al. have shown that for many classes C including PSPACE and NP it holds that all of its nontrivial many-one complete languages are autoreducible. This immediately raises the question of whether all many-one complete languages are Turing self-reducible for such classes C. This paper considers a simpler version of this question whether all PSPACE-complete (NPcomplete) languages...

متن کامل

Very Sparse Leaf Languages

Unger studied the balanced leaf languages defined via poly-logarithmically sparse leaf pattern sets. Unger shows that NP-complete sets are not polynomial-time many-one reducible to such balanced leaf language unless the polynomial hierarchy collapses to Θp2 and that Σ p 2-complete sets are not polynomial-time bounded-truth-table reducible (respectively, polynomial-time Turing reducible) to any ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010